Evolving space-filling curves to distribute radial basis functions over an input space

Abstract
An evolutionary neural network training algorithm is proposed for radial basis function (RBF) networks. The locations of basis function centers are not directly encoded in a genetic string, but are governed by space-filling curves whose parameters evolve genetically. This encoding causes each group of codetermined basis functions to evolve to fit a region of the input space. A network produced from this encoding is evaluated by training its output connections only. Networks produced by this evolutionary algorithm appear to have better generalization performance on the Mackey-Glass time series than corresponding networks whose centers are determined by k-means clustering.

This publication has 24 references indexed in Scilit: