Cardiovascular regulation during head-out water immersion exercise

Abstract
Head-out water immersion is known to increase cardiac filling pressure and volume in humans at rest. The purpose of the present study was to assess whether these alterations persist during dynamic exercise. Ten men performed upright cycling exercise on land and in water to the suprasternal notch at work loads corresponding to 40, 60, 80, and 100% maximal O2 consumption (VO2max). A Swan-Ganz catheter was used to measure right atrial pressure (PAP), pulmonary arterial pressure (PAP), and cardiac index (CI). Left ventricular end-diastolic (LVED) and end-systolic (LVES) volume indexes were assessed with echocardiography. VO2max did not differ between land and water. RAP, PAP, CI, stroke index, and LVED and LVES volume indexes were significantly greater (P less than 0.05) during exercise in water than on land. Stroke index did not change significantly from rest to exercise in water but increased (P less than 0.05) on land. Arterial systolic blood pressure did not differ between land and water at rest or during exercise. Heart rates were significantly lower (P less than 0.05) in water only during the two highest work intensities. The results indicate that indexes of cardiac preload are greater during exercise in water than on land.