Abstract
We review and discuss recent progress in the field of nematic colloids, with an emphasis on possible future applications in photonics. The role of the topology is described, based on experimental manipulations of the topological defects in nematic colloids. The topology of the ordering field in nematics provides the forces between colloidal particles that are unique to these materials. We also discuss recent progress in the new field of active microphotonic devices based on liquid crystals (LCs), where chiral nematic microlasers and tuneable nematic microresonators are just two of the recently discovered examples. We conclude that the combination of topology and microphotonic devices based on LCs provides an interesting platform for future progress in the field of LCs.