Abstract
A technique of canonical quantization in a general dispersive nonlinear dielectric medium is presented. The medium can be inhomogeneous and anisotropic. The fields are expanded in a slowly varying envelope approximation to allow quantization. An arbitrary number of envelopes is included, assuming lossless propagation in each relevant frequency band. The resulting Lagrangian and Hamiltonian agree with known propagation equations and expressions for the dispersive energy. The central result of the theory is an expansion of the quantum Hamiltonian in terms of annihilation and creation operators corresponding to group-velocity photon-polariton excitations in the dielectric.

This publication has 29 references indexed in Scilit: