Abstract
A computer algorithm was developed for automated identification of 2-D vascular networks in X-ray angiograms. This was accomplished by using an adaptive tracking algorithm in a three-stage recursive procedure. First, given a starting position and direction, a segment in the vascular network was identified. Second, by filling it with the surrounding background pixel values, the detected segment was deleted from the angiogram. The detection-deletion scheme was employed to prevent the problem of tracking-path reentry in those areas where vessels overlap. Third, all branch points were detected by use of matched filtering along both edges of the vessel. The detected branch points were used as the starting points in the next recursion. The recursive procedure terminated when no new branch point was found. The algorithm showed a good performance when it was applied to angiograms of coronary and radial arteries. To provide a quantitative evaluation, vascular networks identified by the algorithm were compared to those identified by a human. The algorithm made some false-negative errors, but very few false-positive errors.<>

This publication has 11 references indexed in Scilit: