Patterns and Mechanisms of Ancestral Histone Protein Inheritance in Budding Yeast

Abstract
Replicating chromatin involves disruption of histone-DNA contacts and subsequent reassembly of maternal histones on the new daughter genomes. In bulk, maternal histones are randomly segregated to the two daughters, but little is known about the fine details of this process: do maternal histones re-assemble at preferred locations or close to their original loci? Here, we use a recently developed method for swapping epitope tags to measure the disposition of ancestral histone H3 across the yeast genome over six generations. We find that ancestral H3 is preferentially retained at the 5′ ends of most genes, with strongest retention at long, poorly transcribed genes. We recapitulate these observations with a quantitative model in which the majority of maternal histones are reincorporated within 400 bp of their pre-replication locus during replication, with replication-independent replacement and transcription-related retrograde nucleosome movement shaping the resulting distributions of ancestral histones. We find a key role for Topoisomerase I in retrograde histone movement during transcription, and we find that loss of Chromatin Assembly Factor-1 affects replication-independent turnover. Together, these results show that specific loci are enriched for histone proteins first synthesized several generations beforehand, and that maternal histones re-associate close to their original locations on daughter genomes after replication. Our findings further suggest that accumulation of ancestral histones could play a role in shaping histone modification patterns. It is widely believed that chromatin, the nucleoprotein packaged state of eukaryotic genomes, can carry epigenetic information and thus transmit gene expression patterns to replicating cells. However, the inheritance of genomic packaging status is subject to mechanistic challenges that do not confront the inheritance of genomic DNA sequence. Most notably, histone proteins must at least transiently dissociate from the maternal genome during replication, and it is unknown whether or not maternal proteins re-associate with daughter genomes near the sequence they originally occupied on the maternal genome. Here, we use a novel method for tracking old proteins to determine where histone proteins accumulate after 1, 3, or 6 generations of growth in yeast. To our surprise, ancestral histones accumulate near the 5′ end of long, relatively inactive genes. Using a mathematical model, we show that our results can be explained by the combined effects of histone replacement, histone movement along genes from 3′ towards 5′ ends, and histone spreading during replication. Our results show that old histones do move but stay relatively close to their original location (within around 400 base-pairs), which places important constraints on how chromatin could potentially carry epigenetic information. Our findings also suggest that accumulation of the ancestral histones that are inherited can influence histone modification patterns.