Abstract
The reversible phosphorylation of tyrosines in proteins plays a key role in regulating many different processes in eukaryotic organisms, such as growth control, cell cycle control, differentiation, cell shape and movement, gene transcription, synaptic transmission, and insulin action. Phosphorylation of proteins is brought about by enzymes called protein–tyrosine kinases that add phosphate to specific tyrosines in target proteins; phosphate is removed from phosphorylated tyrosines by enzymes called protein–tyrosine phosphatases. Phosphorylated tyrosines are recognized by specialized binding domains on other proteins, and such interactions are used to initiate intracellular signalling pathways. Currently, more than 95 protein–tyrosine kinases and more than 55 protein–tyrosine phosphatase genes are known inHomo sapiens. Aberrant tyrosine phosphorylation is a hallmark of many types of cancer and other human diseases. Drugs are being developed that antagonize the responsible protein–tyrosine kinases and phosphatases in order to combat these diseases.