The design and simulated performance of a coated nano-particle laser

Abstract
The optical properties of a concentric nanometer-sized spherical shell comprised of an (active) 3-level gain medium core and a surrounding plasmonic metal shell are investigated. Current research in optical metamaterials has demonstrated that including lossless plasmonic materials to achieve a negative permittivity in a nano-sized coated spherical particle can lead to novel optical properties such as resonant scattering as well as transparency or invisibility. However, in practice, plasmonic materials have high losses at optical frequencies. It is observed that with the introduction of active materials, the intrinsic absorption in the plasmonic shell can be overcome and new optical properties can be observed in the scattering and absorption cross-sections of these coated nano-sized spherical shell particles. In addition, a “super” resonance is observed with a magnitude that is 103 greater than that for a tuned, resonant passive nano-sized coated spherical shell. This observation suggests the possibility of realizing a highly sub-wavelength laser with dimensions more than an order of magnitude below the traditional half-wavelength cavity length criteria. The operating characteristics of this coated nano-particle (CNP) laser are obtained numerically for a variety of configurations.