Abstract
Related perceptual, motor, and cognitive performances were examined to reveal the accuracy of the properties of action spontaneously represented when mentally simulating moving one's hand. The kinematic configuration of the body represented and transformed in mental simulations was not fixed or canonical but corresponded to one's current configuration. Mental simulation time mimicked movement time for natural efficient movement from a posture midway between each of the hand's joint limits into many other postures. Equal time was required for simulated and real movements into more common, comfortable postures; shorter but proportional time was required for simulated movement than real movement into less common postures that involved longer trajectories, coordinated activity at more joints, motion near extremes of joint limits, and uncomfortable kinesthetic sensations. The findings suggest that sensorimotor structures support mental simulations of actions.