Translational Attenuation and mRNA Stabilization as Mechanisms of erm (B) Induction by Erythromycin

Abstract
Translational attenuation has been proposed to be the mechanism by which the erm (B) gene is induced. Here, we report genetic and biochemical evidence, obtained by using erythromycin as the inducing antibiotic, that supports this hypothesis. We also show that erythromycin increases the level of the erm (B) transcript by stalling the ribosome on the leader mRNA and thereby facilitating the stabilization and processing of the mRNA. Erythromycin-induced mRNA stabilization and processing were observed with an ochre stop at codons 11 to 13 of the leader but not with an ochre stop at codon 10. This suggests that erythromycin does not stall the ribosome before codon 11 of the leader reaches the aminoacyl site. Secondary structure analyses of the erm (B) transcripts by in vitro and in vivo chemical probing techniques identified conformational changes in the transcripts that result from induction by erythromycin. These findings demonstrate that stalling of erythromycin-bound ribosomes at leader codon 11 causes the refolding of mRNA into a conformation in which the translational initiation site for the structural gene is unmasked and renders erm (B) translationally active.