Profiling chromatin states using single-cell itChIP-seq

Abstract
Single-cell measurement of chromatin states, including histone modifications and non-histone protein binding, remains challenging. Here, we present a low-cost, efficient, simultaneous indexing and tagmentation-based ChIP-seq (itChIP-seq) method, compatible with both low cellular input and single cells for profiling chromatin states. itChIP combines chromatin opening, simultaneous cellular indexing and chromatin tagmentation within a single tube, enabling the processing of samples from tens of single cells to, more commonly, thousands of single cells per assay. We demonstrate that single-cell itChIP-seq (sc-itChIP-seq) yields ~9,000 unique reads per cell. Using sc-itChIP-seq to profile H3K27ac, we sufficiently capture the earliest epigenetic priming event during the cell fate transition from naive to primed pluripotency, and reveal the basis for cell-type specific enhancer usage during the differentiation of bipotent cardiac progenitor cells into endothelial cells and cardiomyocytes. Our results demonstrate that itChIP is a widely applicable technology for single-cell chromatin profiling of epigenetically heterogeneous cell populations in many biological processes.