Interdigitated structure of phospholipid-alcohol systems studied by x-ray diffraction.

Abstract
In the interdigitated structure of phosphatidylcholine/alcohol systems, the one-dimensional electron density profile in the direction normal to the membrane surface is generated from the x-ray diffraction pattern. The membrane thickness for these systems is expressed by the sum of the hydrocarbon chain lengths of phosphatidylcholine and alcohol molecules. For this study, various sets of phosphatidylcholines and 1-alcohols were used; a phosphatidylcholine has a carbon number from 14 to 18 in a hydrocarbon chain, and an alcohol has a carbon number from 1 (methanol) to 4 (1-butanol). Based upon the results, we propose a model for the interdigitated structure in which 1) two alcohol molecules occupy a volume whose surface is surrounded interstitially by the headgroups of phosphatidylcholine molecules, and 2) the methyl ends of both hydrocarbon chains in alcohol and phosphatidylcholine molecules face each other at the bottom of the volume.

This publication has 26 references indexed in Scilit: