Abstract
Exercise-induced angiogenesis in skeletal muscle involves both non-sprouting and sprouting angiogenesis and results from the integrated responses of multiple systems and stimuli. VEGF-A (vascular endothelial growth factor A) levels are increased in exercised muscle and have been demonstrated to be critical for exercise-induced capillary growth. Only limited information is available regarding the role of other angiogenic and angiostatic factors in exercise, but changes in the angiopoietin family following repetitive bouts of exercise occur in a pattern that is favourable for angiogenesis. Results from other angiogenic model systems, indicate that miRNAs (microRNAs) are important factors in the regulation of angiogenesis and thus to explore their role as regulators of exercise induced angiogenesis will be an important avenue of study in the future. ECM (extracellular matrix) remodelling and activation of MMPs (matrix metalloproteinases) are, to some extent, overlooked players in skeletal muscle adaptation. Degradation of ECM proteins liberates angiogenic factors from immobilized matrix stores and make cell migration possible. In fact, it is known that MMPs become activated by a single bout of exercise in humans, rapid interstitial changes occur long before any changes in gene transcription could result in protein synthesis and inhibition of MMP activity completely abolishes sprouting angiogenesis. A growing body of evidence suggests that circulating and resident progenitor cells, in addition to other cell types located in skeletal muscle tissue, participate in skeletal muscle angiogenesis by various mechanisms. However, more studies are needed before these can be confirmed as mechanisms of exercise-induced capillary growth.