Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings

Abstract
We propose planar, high numerical aperture (NA), low loss, focusing reflectors and lenses using subwavelength high contrast gratings (HCGs). By designing the reflectance and the phase of non-periodic HCGs, both focusing reflectors and lenses can be constructed. Numerical aperture values as high as 0.81 and 0.96 are achieved for a reflector and lens with very low losses of 0.3 and 0.2 dB, respectively. The design algorithm is also shown to be readily extended to a 2D lens. Furthermore, HCG optics can simultaneously focus the reflected and transmitted waves, with important technological implications. HCG focusing optics are defined by one-step photolithography and thus can be readily integrated with many devices including VCSELs, saturable absorbers, telescopes, CCDs and solar cells.