Crystal structure of a Rad51 filament

Abstract
Rad51, the major eukaryotic homologous recombinase, is important for the repair of DNA damage and the maintenance of genomic diversity and stability. The active form of this DNA-dependent ATPase is a helical filament within which the search for homology and strand exchange occurs. Here we present the crystal structure of a Saccharomyces cerevisiae Rad51 filament formed by a gain-of-function mutant. This filament has a longer pitch than that seen in crystals of Rad51's prokaryotic homolog RecA, and places the ATPase site directly at a new interface between protomers. Although the filament exhibits approximate six-fold symmetry, alternate protein-protein interfaces are slightly different, implying that the functional unit of Rad51 within the filament may be a dimer. Additionally, we show that mutation of His352, which lies at this new interface, markedly disrupts DNA binding.