Abstract
Several authors relate accumulation (or precipitation) at the glacier equilibrium-line altitude (ELA) to summer mean temperature using exponential or power-law functions. I analyze the accumulation–temperature relation at the ELA with a degree-day model using data from the 1992 paper by A. Ohmura and others. The dataset includes estimates at the ELA of winter balance and of ‘winter balance plus summer precipitation’ which represent respectively low and high estimates of annual accumulation, which is seldom measured. The Ohmura dataset only lists summer mean temperature, but I recover monthly temperatures for the whole year for 66 of the glaciers by assuming sinusoidal temperature variation through the year and using annual temperature range from a gridded climatology. Monthly degree-day sums are then estimated from monthly mean temperature and summed to give annual totals so degree-day factors for melting snow at the ELA are obtained. The degree-day factors fall close to those reported in the literature for glacier snowmelt, with averages of 3.5 ± 1.4 and 4.6 ± 1.4 mm d−1 K−1 for low- and high-accumulation estimates on the 66 glaciers. The degree-day model gives a family of accumulation–temperature curves that depend upon the annual temperature range, representing the contrast between maritime and continental climates.