A Telescoping method for Double Summations

Preprint
Abstract
We present a method to prove hypergeometric double summation identities. Given a hypergeometric term $F(n,i,j)$, we aim to find a difference operator $ L=a_0(n) N^0 + a_1(n) N^1 +...+a_r(n) N^r $ and rational functions $R_1(n,i,j),R_2(n,i,j)$ such that $ L F = \Delta_i (R_1 F) + \Delta_j (R_2 F)$. Based on simple divisibility considerations, we show that the denominators of $R_1$ and $R_2$ must possess certain factors which can be computed from $F(n, i,j)$. Using these factors as estimates, we may find the numerators of $R_1$ and $R_2$ by guessing the upper bounds of the degrees and solving systems of linear equations. Our method is valid for the Andrews-Paule identity, Carlitz's identities, the Ap\'ery-Schmidt-Strehl identity, the Graham-Knuth-Patashnik identity, and the Petkov\v{s}ek-Wilf-Zeilberger identity.