Acute regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules

Abstract
We investigated the regulation of organic anion transport driven by the organic anion transporter 3 (OAT3), a multispecific OAT localized at the basolateral membrane of the renal proximal tubule. PMA, a PKC activator, inhibited uptake of estrone sulfate (ES), a prototypic substrate for OAT3, in a dose- and time-dependent manner. This inhibition was reduced by 100 nM bisindoylmaleimide I (BIM), a specific PKC inhibitor. The α1-adrenergic receptor agonist phenylephrine also inhibited ES uptake, and this effect was reduced by BIM. These results suggest that PKC activation downregulates OAT3-mediated organic anion transport. In contrast, epidermal growth factor (EGF) increased ES uptake following activation of MAPK. Exposure to PGE2or dibutyryl (db)-cAMP also enhanced ES uptake. Stimulation produced by PGE2and db-cAMP was prevented by the PKA inhibitor H-89, indicating that this stimulation required PKA activation. In addition, inhibition of cyclooxygenase 1 (COX1) (but not COX2) inhibited ES uptake. Furthermore, the stimulatory effect of EGF was eliminated by inhibition of either COX1 or PKA. These data suggest that EGF stimulates ES uptake by a process in which MAPK activation results in increased PGE2production that, in turn, activates PKA and subsequently stimulates ES uptake. Interestingly, EGF did not induce upregulation immediately following phenylephrine-induced downregulation; and phenylephrine did not induce downregulation immediately after EGF-induced upregulation. These data are the first to show the regulatory response of organic anion transport driven by OAT3 in intact renal proximal tubules.

This publication has 39 references indexed in Scilit: