Deep Sequencing Analysis of Small Noncoding RNA and mRNA Targets of the Global Post-Transcriptional Regulator, Hfq

Top Cited Papers
Open Access
Abstract
Recent advances in high-throughput pyrosequencing (HTPS) technology now allow a thorough analysis of RNA bound to cellular proteins, and, therefore, of post-transcriptional regulons. We used HTPS to discover the Salmonella RNAs that are targeted by the common bacterial Sm-like protein, Hfq. Initial transcriptomic analysis revealed that Hfq controls the expression of almost a fifth of all Salmonella genes, including several horizontally acquired pathogenicity islands (SPI-1, -2, -4, -5), two sigma factor regulons, and the flagellar gene cascade. Subsequent HTPS analysis of 350,000 cDNAs, derived from RNA co-immunoprecipitation (coIP) with epitope-tagged Hfq or control coIP, identified 727 mRNAs that are Hfq-bound in vivo. The cDNA analysis discovered new, small noncoding RNAs (sRNAs) and more than doubled the number of sRNAs known to be expressed in Salmonella to 64; about half of these are associated with Hfq. Our analysis explained aspects of the pleiotropic effects of Hfq loss-of-function. Specifically, we found that the mRNAs of hilD (master regulator of the SPI-1 invasion genes) and flhDC (flagellar master regulator) were bound by Hfq. We predicted that defective SPI-1 secretion and flagellar phenotypes of the hfq mutant would be rescued by overexpression of HilD and FlhDC, and we proved this to be correct. The combination of epitope-tagging and HTPS of immunoprecipitated RNA detected the expression of many intergenic chromosomal regions of Salmonella. Our approach overcomes the limited availability of high-density microarrays that have impeded expression-based sRNA discovery in microorganisms. We present a generic strategy that is ideal for the systems-level analysis of the post-transcriptional regulons of RNA-binding proteins and for sRNA discovery in a wide range of bacteria. The past decade has seen small regulatory RNA become an important new mediator of bacterial mRNA regulation. This study describes a rapid way to identify novel sRNAs that are expressed, and should prove relevant to a variety of bacteria. We purified the epitope-tagged RNA-binding protein, Hfq, and its bound RNA by immunoprecipitation from the model pathogen, Salmonella enterica serovar Typhimurium. This new strategy used Next Generation pyrosequencing to identify 727 Hfq-bound mRNAs. The numbers of sRNAs expressed in Salmonella was doubled to 64; half are associated with Hfq. We defined the exact coordinates of sRNAs, and confirmed that they are expressed at significant levels. We also determined the Hfq regulon in Salmonella, and reported the role of Hfq in controlling transcription of major pathogenicity islands, horizontally acquired regions, and the flagellar cascade. Hfq is reported to be a global regulator that affects the expression of almost a fifth of all Salmonella genes. Our new approach will allow sRNAs and mRNAs to be characterized from different genetic backgrounds, or from bacteria grown under particular environmental conditions. It will be valuable to scientists working on genetically tractable bacteria who are interested in the function of RNA-binding proteins and the identification of sRNAs.