Novel Alpha Interferon (IFN-α) Variant with Improved Inhibitory Activity against Hepatitis C Virus Genotype 1 Replication Compared to IFN-α2b Therapy in a Subgenomic Replicon System

Abstract
Hepatitis C virus (HCV) treatment is based on the association of pegylated alpha interferon (IFN-α) and ribavirin. To improve the level of sustained virological response to treatment, especially in patients infected with HCV genotype 1, new IFNs with improved efficacy and toxicity profiles may be developed. In this report, we show that, in the BM4-5 cell line harboring an HCV subgenomic replicon, a novel and naturally occurring human IFN-α17 variant, GEA007.1, which was discovered by using an original population genetics-based drug discovery approach, inhibits HCV genotype 1 RNA replication more efficiently than does IFN-α2b. Moreover, we show that complete viral clearance is obtained in BM4-5 cells after long-term treatment with GEA007.1, while HCV subgenomic RNA is still detected in cells treated with other IFN-α variants or with standard IFN-α2b. Eventually, we demonstrate that the better inhibitory activity of GEA007.1 compared to that of standard IFN-α is likely to be due to stronger and faster activation of the JAK-STAT signaling pathway and to broader expression of IFN-α-responsive genes in cells. Our results demonstrate a superior inhibitory activity of GEA007.1 over that of IFN-α2b in the HCV replicon system. Clinical trials are required to determine whether GEA007.1 could be a potent “next generation” IFN for the treatment of HCV infection, especially in nonresponders or relapsing patients infected with HCV genotype 1 who currently represent a clinical unmet need.