Highly emissive platinum(II) metallacages

Abstract
Light-emitting materials, especially those with tunable wavelengths, attract considerable attention for applications in optoelectronic devices, fluorescent probes, sensors and so on. Many species evaluated for these purposes either emit as a dilute solution or on aggregation, with the former often self-quenching at high concentrations, and the latter falling dark when aggregation is disrupted. Here we preserve emissive behaviour at both low- and high-concentration regimes for two discrete supramolecular coordination complexes (SCCs). These tetragonal prismatic SCCs are self-assembled on mixing a metal acceptor, Pt(PEt3)2(OSO2CF3)2, with two organic donors, a pyridyl-decorated tetraphenylethylene and one of two benzene dicarboxylate species. The rigid organization of these fluorescence-active ligands imparts an emissive behaviour to dilute solutions of the resulting assemblies. Furthermore, on aggregation the prisms exhibit variable-wavelength visible-light emission, including rare white-light emission in tetrahydrofuran. The favourable photophysical properties and solvent-dependent aggregation behaviour provide a means to tune emission wavelengths.