The power of randomness in bayesian optimal mechanism design

Abstract
We investigate the power of randomness in the context of a fundamental Bayesian optimal mechanism design problem - a single seller aims to maximize expected revenue by allocating multiple kinds of resources to "unit-demand" agents with preferences drawn from a known distribution. When the agents' preferences are single-dimensional Myerson's seminal work [14] shows that randomness offers no benefit - the optimal mechanism is always deterministic. In the multi-dimensional case, where each agent's preferences are given by different values for each of the available services, Briest et al.[6] recently showed that the gap between the expected revenue obtained by an optimal randomized mechanism and an optimal deterministic mechanism can be unbounded even when a single agent is offered only 4 services. However, this large gap is attained through unnatural instances where values of the agent for different services are correlated in a specific way. We show that when the agent's values involve no correlation or a specific kind of positive correlation, the benefit of randomness is only a small constant factor (4 and 8 respectively). Our model of positively correlated values (that we call the common base value model) is a natural model for unit-demand agents and items that are substitutes. Our results extend to multiple agent settings as well.

This publication has 15 references indexed in Scilit: