Neurophysiology of Prehension. II. Response Diversity in Primary Somatosensory (S-I) and Motor (M-I) Cortices

Abstract
Prehension responses of 76 neurons in primary somatosensory (S-I) and motor (M-I) cortices were analyzed in three macaques during performance of a grasp and lift task. Digital video recordings of hand kinematics synchronized to neuronal spike trains were compared with responses in posterior parietal areas 5 and AIP/7b (PPC) of the same monkeys during seven task stages: 1) approach, 2) contact, 3) grasp, 4) lift, 5) hold, 6) lower, and 7) relax. S-I and M-I firing patterns signaled particular hand actions, rather than overall task goals. S-I responses were more diverse than those in PPC, occurred later in time, and focused primarily on grasping. Sixty-three percent of S-I neurons fired at peak rates during contact and/or grasping. Lift, hold, and lowering excited fewer S-I cells. Only 8% of S-I cells fired at peak rates before contact, compared with 27% in PPC. M-I responses were also diverse, forming functional groups for hand preshaping, object acquisition, and grip force application. M-I activity began ≤500 ms before contact, coinciding with the earliest activity in PPC. Activation of specific muscle groups in the hand was paralleled by matching patterns of somatosensory feedback from S-I needed for efficient performance. These findings support hypotheses that predictive and planning components of prehension are represented in PPC and premotor cortex, whereas performance and feedback circuits dominate activity in M-I and S-I. Somatosensory feedback from the hand to S-I enables real-time adjustments of grasping by connections to M-I and updates future prehension plans through projections to PPC.