A nanostructured cerium oxide film-based immunosensor for mycotoxin detection

Abstract
Rabbit-immunoglobulin antibodies (r-IgGs) and bovine serum albumin (BSA) have been immobilized onto sol-gel-derived nanostructured cerium oxide (nanoCeO(2)) film fabricated onto an indium-tin-oxide (ITO) coated glass plate to detect ochratoxin-A (OTA). Broad reflection planes obtained in x-ray diffraction (XRD) patterns reveal the formation of CeO(2) nanostructures. Electrochemical studies reveal that nanoCeO(2) particles provide an increased electroactive surface area for loading of r-IgGs with desired orientation, resulting in enhanced electron communication between r-IgGs and electrode. BSA/r-IgGs/nano CeO(2)/ITO immunoelectrode exhibits improved characteristics such as linear range (0.5-6 ng dl(-1)), low detection limit (0.25 ng dl(-1)), fast response time (30 s) and high sensitivity (1.27 microA ng(-1) dl(-1) cm(-2)). The high value of the association constant (K(a), 0.9 x 10(11) l mol(-1)) indicates the high affinity of the BSA/r-IgGs/nanoCeO(2)/ITO immunoelectrode to OTA.