Mechanistic examination of the titania photocatalyzed oxidation of ethanolamines

Abstract
In this study we focus on elucidating the mechanism of the photocatalyzed transformation of the primary, secondary and tertiary amines found in ethanolamine, diethanolamine and triethanolamine when present in illuminated aqueous titania dispersions. Photodecomposition of these ethanolamines leads to the evolution of CO2 through prior formation of various intermediate species. Ammonium (NH4+) and nitrate ions (NO3−) are the ultimate products formed in the photoconversion of the amine nitrogen atoms, with NH4+ cations produced in greater quantity than NO3− anions for all three ethanolamines. Photooxidation of triethanolamine yields various intermediates, including a 3-pyrrolidone derivative, diethanolamine, and then ethanolamine, before complete mineralization occurs. The nature of the initial steps in the photodegradation was predicted by computer-aided molecular orbital (MO) calculations of point charges, and by frontier electron densities of all atoms in the ethanolamine structures.