Charged-particle acceleration and energy loss in laser-produced plasmas

Abstract
Spectral measurements have been made of charged fusion products produced in deuterium + helium-3 filled targets irradiated by the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Comparing the energy shifts of four particle types has allowed two distinct physical processes to be probed: Electrostatic acceleration in the low-density corona and energy loss in the high-density target. When the fusion burn occurred during the laser pulse, particle energy shifts were dominated by acceleration effects. Using a simple model for the accelerating field region, the time history of the target electrostatic potential was found and shown to decay to zero soon after laser irradiation was complete. When the fusion burn occurred after the pulse, particle energy shifts were dominated by energy losses in the target, allowing fundamental charged-particle stopping-power predictions to be tested. The results provide the first experimental verification of the general form of stopping power theories over a wide velocity range.