Abstract
A combination of cosmid genome walking and pulsed-field gel electrophoresis was used to construct a high-resolution physical and genetic map of the 3.8-megabase (Mb) genome of Rhodobacter capsulatus SB1003. The mapping was done by hybridization of pulsed-field gel blots and by grouping and further mapping of the cosmids and bacteriophages from genomic libraries. Cosmid clones formed two uninterrupted and ordered groups, one corresponding to the chromosome of R. capsulatus, the other to its 134-kb plasmid. Cos site end-labeling and partial EcoRV digestion of cosmids were used to construct a high-resolution EcoRV map of the genome. Overlapping of the cosmids was confirmed by the resemblance of the cosmid restriction maps and by direct end-to-end hybridization with SP6- and T7-specific transcripts. Twenty-three previously cloned genes and eight groups of repeated sequences, revealed in this work, were located in the ordered gene library and mapped with an accuracy of 1-10 kb. Blots of a minimal set of 192 cosmids, covering the chromosome and the plasmid with the known map position of each cosmid, give to R. capsulatus the same advantages that the Kohara phage panel gives to E. coli.