Electron spin relaxation in graphene: The role of the substrate

Abstract
Theory of the electron-spin relaxation in graphene on the SiO2 substrate is developed. Charged impurities and polar-optical surface phonons in the substrate induce an effective random Bychkov-Rashba-like spin-orbit coupling field, which leads to spin relaxation by the D’yakonov-Perel’ mechanism. Analytical estimates and Monte Carlo simulations show that the corresponding spin relaxation times are between micro- to milliseconds, being only weakly temperature dependent. It is also argued that the presence of adatoms on graphene can lead to spin lifetimes shorter than nanoseconds.

This publication has 21 references indexed in Scilit: