Abstract
Synthetic multielement solutions of the platinum group metals (PGE: Ru; Rh; Pd; Ir; Pt) and gold, with analysis by ICP-AES and ICP-MS, have been used to study the behaviour of the precious metals on Dowex 1-X8 resin. Simple solutions of precious-metal chlorocomplexes showed near-complete adsorption (>99%) of most elements, and only minor breakthrough of Ru and Ru (≈5%). Solutions pre-treated with acid mixtures typically used to decompose geological samples, demonstrated that perchloric acid adversely affects the adsorption of the PGEs on the resin. Solutions treated with HF–HNO 3 –HCl maintained good retention of Ir, Pt, Au (>99%), Pd (>94%) and Ru (>90%), but displayed significant loss (up to 40%) of Rh. A two-step procedure was necessary to elute the precious metals from the resin: 0.3 mol l - 1 thiourea prepared in 0.1 mol - 1 HCl removed Ru, Pd, Pt, Au, and some Rh: 12 mol l - 1 HCl eluted remaining Rh and all Ir. Recoveries ranged from 50 to 100%. At low levels, the determination of PGE and Au in the thiourea fraction by ICP-MS was compromised by high levels of total dissolved solids (TDS), which necessitated dilution of the eluate prior to analysis. The TDS was reduced by decomposing thiourea with HNO 3 and removing SO 4 2 - by precipitation of BaSO 4 , but this led to lower and more erratic results, and increased contamination. An assessment of the optimised procedure employing geological reference materials PTM-1, PTC-1 and SARM7, indicated that acceptable results should be attainable for ICP-MS determination of most elements in geological samples containing high concentrations (>1 µg g - 1 ) of the PGE, for which decomposition of thiourea is unneccessary. The addition of a decomposition step led to low recovery of all elements except Ir, which was present entirely in the HCl eluate. The method is viable for the determination of Ir in a range of geological materials, but modifications will be required if it is to be extended to the other precious metals.