Motion of atoms in a radiation trap

Abstract
The force exerted by optical-frequency radiation on neutral atoms can be quite substantial, particularly in the neighborhood of an atomic resonance line. In this paper we derive from quantum theory the optical force, its first-order velocity dependence, and its fluctuations for arbitrary light intensity, and apply the results to the problem of creating a stable optical trap for sodium atoms. New results include the position dependence of the velocity-dependent force, a complete expression for the momentum diffusion constant including the substantial contribution from fluctuations of the dipole force, and an estimate of trapping times in excess of 1 sec even in the absence of effective damping. The paper concludes with a discussion of the prospects and difficulties in providing sufficient damping to stabilize such a trap.