Abstract
A traditional view of cellular differentiation is unidirectional: progenitor cells adopt specific fates in response to environmental cues resulting in deployment of cell-specific gene expression programs and acquisition of unique differentiated cellular properties such as production of structural and functional proteins that define individual cell types. In both development and in tissue repair stem and progenitor cells are thought to both self-renew to maintain the pool of precursors and to expand to give rise to transient amplifying and differentiated cell types. Recently, however, it has become appreciated that differentiated cell types can be reprogrammed to adopt progenitor and stem cell properties. In the case of epithelial cells in the mammalian liver, hepatocytes and biliary epithelial cells there is a significant degree of plasticity between these lineages that has been implicated in mechanisms of tissue repair and in liver pathologies such as cancer. Recent studies have highlighted the role of Hippo signaling, an emerging growth control and tumor suppressor pathway, in regulating epithelial cell plasticity in the mammalian liver and in this review, the role of cellular plasticity and Hippo signaling in regulating normal and abnormal tissue responses in the mammalian liver will be discussed.