Controlled release of avermectin from porous hollow silica nanoparticles

Abstract
Porous hollow silica nanoparticles (PHSNs) with a diameter of ca 100 nm and a pore size of ca 4.5 nm were synthesized via a sol–gel route using inorganic calcium carbonate nanoparticles as templates. The synthesized PHSNs were subsequently employed as pesticide carriers to study the controlled release behaviour of avermectin. The avermectin-loaded PHSN (Av-PHSN) samples were characterized by BET, thermogravimetric analysis and IR, showing that the amount of avermectin encapsulated in the PHSN carrier could reach 58.3% w/w by a simple immersion loading method, and that most of the adsorption of avermectin on the Av-PHSN carrier might be physical. Avermectin may be loaded on the external surface, the pore channels in the wall and the inner core of the PHSN carriers, thus leading to a multi-stage sustained-release pattern from the Av-PHSN samples. Increasing pH or temperature intensified the avermectin release. Copyright © 2005 Society of Chemical Industry