Mechanisms Underlying Conduction Slowing and Arrhythmogenesis in Nonischemic Dilated Cardiomyopathy

Abstract
Heart Failure (HF) is associated with an increased risk of sudden death caused by ventricular tachyarrhythmias. Recent studies have implicated repolarization abnormalities and, in particular, exaggerated heterogeneity of transmural repolarization in the genesis of polymorphic ventricular tachycardia in a canine model of nonischemic dilated cardiomyopathy. The presence and degree to which conduction abnormalities play a role in arrhythmogenesis in this model are uncertain. HF was produced in dogs by rapid RV-pacing for 3 to 4 weeks. High-resolution optical action potentials were recorded from epicardial and endocardial surfaces of arterially perfused canine wedge preparations isolated from LV and RV of normal and failing dogs. Cellular and molecular determinants of conduction were investigated using patch-clamp recordings, Western blot analysis, and immunocytochemistry. HF was associated with marked prolongation (by 33%) of the QRS duration of the volume conducted electrocardiogram and significant (>20%) slowing of epicardial and endocardial conduction velocities (CV) in both LV and RV. Cx43 expression was reduced by >40% in epicardial and endocardial layers of the LV, but was unchanged in the RV of failing hearts. Despite greater epicardial than endocardial Cx43 expression, epicardial CV was consistently slower (PPP=0.8, not significant), and Masson trichrome staining revealed no significant change in fibrosis content in HF. Nonischemic dilated cardiomyopathy is associated with significant slowing of CV that was not directly related to reduced Cx43 expression. Changes in phosphorylation and localization of Cx43 may contribute to gap-junction dysfunction, CV slowing, and arrhythmias in HF.