Development and Evaluation of a Sensitive PCR-ELISA System for Detection of Schistosoma Infection in Feces

Abstract
A PCR-enzyme-linked immunosorbent assay (PCR-ELISA) was developed to overcome the need for sensitive techniques for the efficient diagnosis of Schistosoma infection in endemic settings with low parasitic burden. This system amplifies a 121-base pair tandem repeat DNA sequence, immobilizes the resultant 5′ biotinylated product on streptavidin-coated strip-well microplates and uses anti-fluorescein antibodies conjugated to horseradish peroxidase to detect the hybridized fluorescein-labeled oligonucleotide probe. The detection limit of the Schistosoma PCR-ELISA system was determined to be 1.3 fg of S. mansoni genomic DNA (less than the amount found in a single cell) and estimated to be 0.15 S. mansoni eggs per gram of feces (fractions of an egg). The system showed good precision and genus specificity since the DNA target was found in seven Schistosoma DNA samples: S. mansoni, S. haematobium, S. bovis, S. intercalatum, S. japonicum, S. magrebowiei and S. rhodaini. By evaluating 206 patients living in an endemic area in Brazil, the prevalence of S. mansoni infection was determined to be 18% by examining 12 Kato-Katz slides (41.7 mg/smear, 500 mg total) of a single fecal sample from each person, while the Schistosoma PCR-ELISA identified a 30% rate of infection using 500-mg of the same fecal sample. When considering the Kato-Katz method as the reference test, artificial sensitivity and specificity rates of the PCR-ELISA system were 97.4% and 85.1%, respectively. The potential for estimating parasitic load by DNA detection in feces was assessed by comparing absorbance values and eggs per gram of feces, with a Spearman correlation coefficient of 0.700 (PSchistosoma PCR-ELISA, a system that may serve as an alternative for diagnosing Schistosoma infection. Schistosomiasis is a neglected disease caused by worms of the genus Schistosoma. The transmission cycle requires contamination of bodies of water by parasite eggs present in excreta, specific snails as intermediate hosts and human contact with water. Fortunately, relatively safe and easily administrable drugs are available and, as the outcome of repeated treatment, a reduction of severe clinical forms and a decrease in the number of infected persons has been reported in endemic areas. The routine method for diagnosis is the microscopic examination but it fails when there are few eggs in the feces, as usually occurs in treated but noncured persons or in areas with low levels of transmission. This study reports the development of the PCR-ELISA system for the detection of Schistosoma DNA in human feces as an alternative approach to diagnose light infections. The system permits the enzymatic amplification of a specific region of the DNA from minute amounts of parasite material. Using the proposed PCR-ELISA approach for the diagnosis of a population in an endemic area in Brazil, 30% were found to be infected, as compared with the 18% found by microscopic fecal examination. Although the technique requires a complex laboratory infrastructure and specific funding it may be used by control programs targeting the elimination of schistosomiasis.