Power Spectrum Analysis of Heart Rate Fluctuation: A Quantitative Probe of Beat-to-Beat Cardiovascular Control

Abstract
Power spectrum analysis of heart rate fluctuations provides a quantitative noninvasive means of assessing the functioning of the short-term cardiovascular control systems. We show that sympathetic and parasympathetic nervous activity make frequency-specific contributions to the heart rate power spectrum, and that renin-angiotensin system activity strongly modulates the amplitude of the spectral peak located at 0.04 hertz. Our data therefore provide evidence that the renin-angiotensin system plays a significant role in short-term cardiovascular control in the time scale of seconds to minutes.