Graphene electrochemistry: fundamental concepts through to prominent applications

Abstract
The use of graphene, a one atom thick individual planar carbon layer, has exploded in a plethora of scientific disciplines since it was reported to possess a range of unique and exclusive properties. Despite graphene being explored theoretically since the 1940s and known to exist since the 1960s, the recent burst of interest from a large proportion of scientists globally can be correlated with work by Geim and Novoselov in 2004/5, who reported the so-called “scotch tape method” for the production of graphene in addition to identifying its unique electronic properties which has escalated into graphene being reported to be superior in a superfluity of areas. Consequently, many are involved in the pursuit of producing new methodologies to fabricate pristine graphene on an industrial scale in order to meet the current world-wide appetite for graphene. One area which receives considerable interest is the field of electrochemistry, where graphene has been reported to be beneficial in various applications ranging from sensing through to energy storage and generation and carbon based molecular electronics. Electrochemistry is an interfacial technique which is dominated by processes that occur at the solid–liquid interface and thus with the correct understanding can be beneficially utilised to characterise the surface under investigation. In this tutorial review we overview fundamental concepts of Graphene Electrochemistry, making electrochemical characterisation accessible to those who are working on new methodologies to fabricate graphene, bridging the gap between materials scientists and electrochemists and also assisting those exploring graphene in electrochemical areas, or that wish to start to. An overview of the recent understanding of graphene modified electrodes is also provided, highlighting prominent applications reported in the current literature.