Scalar and Tensor Holographic Artificial Impedance Surfaces

Abstract
We have developed a method for controlling electromagnetic surface wave propagation and radiation from complex metallic shapes. The object is covered with an artificial impedance surface that is implemented as an array of sub-wavelength metallic patches on a grounded dielectric substrate. We pattern the effective impedance over the surface by varying the size of the metallic patches. Using a holographic technique, we design the surface to scatter a known input wave into a desired output wave. Furthermore, by varying the shape of the patches we can create anisotropic surfaces with tensor impedance properties that provide control over polarization. As an example, we demonstrate a tensor impedance surface that produces circularly polarized radiation from a linearly polarized source.

This publication has 13 references indexed in Scilit: