Assessment of an Enterovirus Sewage SurveillanceSystem by Comparison of Clinical Isolates with Sewage Isolatesfrom Milwaukee, Wisconsin, Collected August 1994 toDecember2002

Abstract
The quantity and serotypes of enteroviruses (EVs) in the influent of a local sewage treatment plant were compared to local clinical EV cases to determine if testing of sewage is adequate for an EV surveillance system. The study was carried out from August 1994 to December 2002. Monthly influent specimens were processed by organic flocculation, and dilutions of concentrate were inoculated onto a number of different cell types for virus isolation. EVs were detected in 88 of 100 monthly influent samples. Sewage EV titers were calculated by using software provided by the U.S. Environmental Protection Agency for most-probable-number determination. All 1,068 sewage EV isolates were further grouped (echovirus, coxsackievirus B, coxsackievirus A, or poliovirus) by cell culture host range analysis (growth pattern of isolates on passage to seven cell lines), and 39.0% of the 1,022 EV isolates categorized as non-poliovirus EVs were specifically serotyped. For clinical cases, primary virus isolation tests were performed on specimens submitted by local hospitals and EV isolates submitted by hospitals were serotyped. Clinical EVs were documented for 81 of the 100 months studied. In all, 694 EV isolates from clinical cases were serotyped. Annually, between 4 and 11 different serotypes of non-poliovirus EVs were identified in sewage and from 9 to 19 different non-poliovirus EV serotypes were identified from clinical specimens. Usually, the most commonly detected sewage EV serotypes were similar to the most commonly detected clinical serotypes; e.g., for 1997, echovirus 6 accounted for 53.1% of the typed sewage isolates and 39.4% of the clinical infections, while in 1998, echovirus 30 accounted for 50.0 and 46.1%, respectively. In 1999, 60.3% of the EVs from clinical cases and 79.7% of the sewage isolates were echovirus 11; in 2000, 33.3% of the EVs from clinical cases and 40.7% of the sewage isolates were coxsackievirus B5; and in 2001, 44.1% of the EVs from clinical cases and 36.2% of the sewage isolates were echovirus 13. Annual peaks of both sewage EV titers and clinical cases occurred in late summer or early fall. In some years, early spring sewage EVs portended some of the EVs that would predominate clinically during the following summer.