Analysis of passive elastic joint moment in paraplegics

Abstract
In the functional electrical stimulation of the lower extremity of paraplegics to achieve standing and walking, a mathematical model describing the passive elastic joint moments is essential in order to implement model-based control algorithms. In a previous investigation of ten normal persons we had found significant coupling of passive, elastic joint moments between neighboring joints due to muscle groups that span both joints (biarticular muscles). Thus, we now investigated the biarticular coupling in six paraplegic patients. A comparison to the averaged results of the ten normal persons showed that while the biarticular joint moment coupling due to the gastrocnemius muscle was well preserved in all patients, the coupling due to the rectus femoris was greatly reduced and the coupling due to the hamstring muscle group was negligible. We offer pathophysiologically based explanations for these characteristic differences including the speculation that the predominantly extensor-type spasticity in our patients exercises mainly the anti-gravity muscles such as the gastrocnemius and the rectus femoris, while permitting greater atrophy of the hamstring muscle group. A previously presented double-exponential equation that predicts the joint moments under consideration of the neighboring joint angles could be fitted well to the experimental data.