Spectral Analysis of Blood Pressure Variability in Heart Transplant Patients

Abstract
Abstract The cardiac transplant patient provides a unique model for the study of blood pressure variability in the absence of heart rate variability. We examined the harmonic and fractal components of blood pressure variability in 14 heart transplant patients (12 men, 2 women; 21 to 62 years of age) and in age- and sex-matched control subjects during seated rest, supine rest, and supine rest with fixed-pace breathing (12 respirations per minute). Heart rate was faster in transplant patients than in control subjects, with much less heart rate variability ( P <.0001). Spectral analysis of blood pressure variability revealed no difference in total power for either systolic or diastolic pressure, but transplant patients had less low-frequency (0 to 0.15 Hz) harmonic spectral power in both systolic ( P <.01) and diastolic ( P <.03) pressure and more high-frequency power (0.15 to 0.5 Hz) in diastolic pressure than control subjects. The ratio of high-frequency power in diastolic relative to systolic pressure was consistently higher ( P <.0001) in the transplant patients (0.29 to 0.51) than in control subjects (0.11 to 0.13). The slope of the fractal component of systolic pressure was approximately 1.8 in both transplant patients and control subjects. This was greater than the slope for heart rate variability (approximately 1.1 in control subjects). These data provide clear evidence of independence of the fractal component of heart rate and blood pressure variabilities in both transplant patients and control subjects. The heart rate component of the arterial baroreflex minimized high-frequency diastolic pressure changes while contributing to low-frequency variations in both systolic and diastolic pressures.