Promoter-Proximal Introns in Arabidopsis thaliana Are Enriched in Dispersed Signals that Elevate Gene Expression

Abstract
Introns that elevate mRNA accumulation have been found in a wide range of eukaryotes. However, not all introns affect gene expression, and direct testing is currently the only way to identify stimulatory introns. Our genome-wide analysis in Arabidopsis thaliana revealed that promoter-proximal introns as a group are compositionally distinct from distal introns and that the degree to which an individual intron matches the promoter-proximal intron profile is a strong predictor of its ability to increase expression. We found that the sequences responsible for elevating expression are dispersed throughout an enhancing intron, as is a candidate motif that is overrepresented in first introns and whose occurrence in tested introns is proportional to its effect on expression. The signals responsible for intron-mediated enhancement are apparently conserved between Arabidopsis and rice (Oryza sativa) despite the large evolutionary distance separating these plants.

This publication has 67 references indexed in Scilit: