Transient noise characterization and filtration in CCD cameras exposed to stray radiation from a medical linear accelerator

Abstract
Charge coupled devices (CCDs) are being increasingly used in radiation therapy for dosimetric purposes. However, CCDs are sensitive to stray radiation. This effect induces transient noise. Radiation-induced noise strongly alters the image and therefore limits its quantitative analysis. The purpose of this work is to characterize the radiation-induced noise and to develop filtration algorithms to restore image quality. Two models of CCD were used for measurements close to a medical linac. The structure of the transient noise was first characterized. Then, four methods of noise filtration were compared: median filtering of a time series of identical images, uniform median filtering of single images, an adaptive filter with switching mechanism, and a modified version of the adaptive switch filter. The intensity distribution of noisy pixels was similar in both cameras. However, the spatial distribution of the noise was different: The average noise cluster size was 1.2 +/- 0.6 and 3.2 +/- 2.7 pixels for the U2000 and the Luca, respectively. The median of a time series of images resulted in the best filtration and minimal image distortion. For applications where time series is impractical, the adaptive switch filter must be used to reduce image distortion. Our modified version of the switch filter can be used in order to handle nonisolated groups of noisy pixels.