Linear response theory for a pair of coupled one-dimensional condensates of interacting atoms

Abstract
We use the quantum sine-Gordon model to describe the low-energy dynamics of a pair of coupled one-dimensional condensates of interacting atoms. We show that the nontrivial excitation spectrum of the quantum sine-Gordon model, which includes soliton and breather excitations, can be observed in experiments with time-dependent modulation of the tunneling amplitude, potential difference between condensates, or phase of tunneling amplitude. We use the form-factor approach to compute structure factors corresponding to all three types of perturbations.