Precursor‐directed biosynthesis of stilbene methyl ethers in Escherichia coli

Abstract
Stilbenes are bioactive compounds that show beneficial effects for humans, such as anti-tumor activity and survival improvement. Resveratrol, a representative of stilbenes and showing various health-improving activities, is rapidly metabolized in humans, and modified resveratrols are therefore desired as anti-cancer drugs and dietary polyphenols. An Escherichia coli system, in which an artificial stilbene biosynthetic pathway, including steps of phenylalanine ammonia-lyase, 4-coumarate:CoA ligase, and stilbene synthase, was reconstructed, produced stilbenes in high yields: resveratrol from tyrosine and pinosylvin from phenylalanine. To incorporate a stilbene methyltransferase gene into this E. coli system, cDNA of Os08g06100 in Oryza sativa was expressed and its O-methylating activity toward stilbenes was confirmed. Incorporation of the pinosylvin methyltransferase (OsPMT) gene into the pathway established in E. coli led to production of mono- and di-methylated stilbenes. Furthermore, the OsPMT gene turned out to be useful in production of unnatural stilbene methyl ethers due to its rather relaxed substrate specificity; various carboxylic acids supplemented as precursors, such as p-fluorocinnamic acid, 3-(2-furyl)acrylic acid, 3-(2-thienyl)acrylic acid, and 3-(3-pyridyl)acrylic acid, to the E. coli system carrying the steps of 4-coumarate:CoA ligase, stilbene synthase, and OsPMT were converted to stilbene dimethyl ethers with the corresponding carboxylic moiety.