Abstract
The advent of AI has markedly improved the production potential of dairy cows in all systems of production and transformed the dairy industry in many countries. Unfortunately, for many years breeding objectives focused solely on milk production. This resulted in a major decline in genetic merit for fertility traits. In recent years, the underlying physiological mechanisms responsible for this decline have started to be unravelled. It is apparent that poor genetic merit for fertility traits is associated with multiple defects across a range of organs and tissues that are antagonistic to achieving satisfactory fertility performance. The principal defects include excessive mobilisation of body condition score, unfavourable metabolic status, delayed resumption of cyclicity, increased incidence of endometritis, dysfunctional oestrus expression and inadequate luteal phase progesterone concentrations. On a positive note, it is possible to identify sires that combine good milk production traits with good fertility traits. Sire genetic merit for daughter fertility traits is improving rapidly in the dairy breeds, including the Holstein. With advances in animal breeding, especially genomic technologies, to identify superior sires, genetic merit for fertility traits can be improved much more quickly than they initially declined.

This publication has 82 references indexed in Scilit: