Abstract
Tet(M) protein, which displays homology to elongation factor G (EF-G), interacts with the protein biosynthetic machinery to render this process resistant to tetracycline in vivo and in vitro. To clarify the basis of the resistance mechanism, the effects of Tet(M) on several reactions which occur during protein synthesis were examined. The mechanism of action of Tet(M) has been clarified by two observations. The protein relieves tetracycline inhibition of factor-dependent tRNA binding and dramatically reduces the affinity of ribosomes for tetracycline when GTP is present. This reduction in drug affinity appears to be due to a large increase in the rate of tetracycline dissociation. Addition of Tet(M) to ribosome-tetracycline complexes results in displacement of bound drug. And, while Tet(M) and EF-G GTPase activities are tetracycline resistant, the two proteins differ in their sensitivities to fusidic acid, with the latter activity inhibited by the drug. Furthermore, while Tet(M) protects translation from tetracycline inhibition in a defined system, it is unable to substitute for either EF-G or elongation factor Tu.

This publication has 26 references indexed in Scilit: