Abstract
Early growth response (egr) genes encode transcription factors that are induced by stimuli that cause synaptic plasticity. Here we show that the expression of one member of this family, egr-2, is induced in the orbital frontal cortex (OFC) and medial prefrontal cortex (mPFC) of mice performing an attention-set-shifting task (ASST). The ASST is a series of two-choice perceptual discriminations between different odors and textures. Within the OFC and mPFC, different subregions exhibited egr-2 induction in response to different test-related features. In the medial OFC and the anterior cingulate subregion of the mPFC, egr-2 induction occurred in response to exposure to the novel odor stimulus. In the ventrolateral OFC and the pre- and infralimbic mPFC, additional egr-2 induction occurred during the associative learning phase of the ASST. In the infralimbic mPFC, further egr-2 induction occurred when mice performed set-shifting and reversal learning phases of the ASST. Mice with enhanced set-shifting performance exhibited decreased egr-2 induction in the mPFC indicating that the magnitude of egr-2 induction correlates with the magnitude of attentional demand. This decrease was largest in the infralimbic mPFC suggesting further that egr-2 induction in this region plays a role in the attentional control during set-shifting.