Abstract
Ouabain had no effect on the volume of intercalated cells of DOCA-stimulated rabbit cortical collecting tubules, but caused principal cells to swell rapidly at an initial rate of 67% min., Principal cells swelled 133% then activated regulatory volume decrease mechanisms and shrank at an initial rate of −3%/min to a new volume 13% above control. The initial rate of ouabain swelling was completely inhibited by perfusate Na+ removal or reduced 95% by luminal addition of 10−5 m amiloride. Luminal peritubular, or bilateral Cl removal each caused cell shrinkages of 10% and reduced the rate of ouabain swelling by 70, 85, and 99%, respectively. The presence of an apical Cl transport step in principal cells was confirmed by increasing luminal K+ from 5 to 53mm, which caused cell swelling of 22%. This volume increase was completely blocked by luminal Cl removal, but was unaffected by peritubular Cl substitution. Perfusion of CCT with 0.1mm acetazolomide, 0.1mm DPC or 0.5mm SITS caused principal cell shrinkages of 7–9% and reduced the rate of ouabain swelling by 60, 70, and 40%, respectively. The initial rate of ouabain swelling was inhibited 70% by bilateral CO2/HCO3 removal and 50% by whole animal acid loading. Taken together these results demounstrate that ouabain swelling is due to cellular NaCl accumulation and that Na+ enters the cell primarily through apical Na+ channels. Cellular Cl entry occurs at least partially through the apical membrane and may be mediated by a Cl/HCO 3 exchanger. Brief (45–90 sec) exposure of principal cells to ouabain is associated with a rapid inhibition of Na+ and/or Cl entry steps, whereas long-term (>5min) ouabvain exposure completely blocks one or both of these transport pathways.