Advanced glycation end products inhibit adhesion ability of differentiated podocytes in a neuropilin-1-dependent manner

Abstract
Podocyte injury can occur by a number of stimuli. Maintaining of an intact podocyte structure is essential for glomerular filtration; therefore, podocyte damage severely impairs renal function. Recently, we have reported that addition of glycated BSA [advanced glycation end products (AGE)-BSA] to differentiated murine podocytes inhibited neuropilin-1 (NRP1) expression and dramatically influenced podocyte migration ability (Bondeva T, Ruster C, Franke S, Hammerschmid E, Klagsbrun M, Cohen CD, Wolf G. Kidney Int 75: 605–616, 2009; Bondeva T, Wolf G. Am J Nephrol 30: 336–345, 2009). The present study analyzes the influence of AGEs and NRP1 on podocyte adhesion and cytoskeleton reorganization. We show that treatment with AGE-BSA significantly reduced podocyte adhesion to collagen IV, laminin, and fibronectin compared with Co-BSA (nonglycated BSA)-incubated cells, which was further augmented by transient inhibition of NRP1 expression using NRP1 short interference (si) RNA. On the other hand, forced overexpression of NRP1 markedly increased the adhesion ability of podocytes to the ECMs despite the AGE-BSA treatment. No changes were observed when podocyte adhesion to collagen I was assayed. These findings were also manifested with disorganization of podocyte actin stress fibers and decreased lamellipodia formation processes due to AGE-BSA treatment or NRP1 suppression. In addition, AGE-BSA or suppression of NRP1 both reduced the phosphorylation of focal adhesion kinase (FAK) and Erk1/2 in PMA-stimulated differentiated podocytes. Analysis of RhoA family GTPase activity demonstrated that treatment with AGE-BSA or NRP1 depletion inhibited as well the activation of the Rac-1 and Cdc42 but did not affect RhoA activity. All these effects were reversed by forced overexpression of full-length NRP1 cloned into the pcDNA3 vector in differentiated podocytes. Our study demonstrates that AGEs, in part via suppression of NRP1 expression, decreased podocyte adhesion and contribute to reduction of Rac-1 and Cdc42 GTPase activity. These effects may be further responsible for the podocytes damage and loss in diabetic nephropathy. Our findings suggest a role for NRP1 in regulating the podocyte actin cytoskeleton, and therefore reduction of NRP1 expression could be critical for podocyte function.