Ectopic Expression of a Cecropin Transgene in the Human Malaria Vector MosquitoAnopheles gambiae(Diptera: Culicidae): Effects on Susceptibility toPlasmodium

Abstract
Genetically altering the disease vector status of insects using recombinant DNA technologies is being considered as an alternative to eradication efforts. Manipulating the endogenous immune response of mosquitoes such as the temporal and special expression of antimicrobial peptides like cecropin may result in a refractory phenotype. Using transgenic technology a unique pattern of expression of cecropin A (cecA) in Anopheles gambiae was created such that cecA was expressed beginning 24 h after a blood meal in the posterior midgut. Two independent lines of transgenic An. gambiae were created using a piggyBac gene vector containing the An. gambiae cecA cDNA under the regulatory control of the Aedes aegypti carboxypeptidase promoter. Infection with Plasmodium berghei resulted in a 60% reduction in the number of oocysts in transgenic mosquitoes compared with nontransgenic mosquitoes. Manipulating the innate immune system of mosquitoes can negatively affect their capacity to serve as hosts for the development of disease-causing microbes.